Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Verrill, Helena; Kattchee, Karl; Gould, S Louise; Torrence, Eve (Ed.)
- 
            Generalized splines are an algebraic combinatorial framework that generalizes and unifies various established concepts across different fields, most notably the classical notion of splines and the topological notion of GKM theory. The former consists of piecewise polynomials on a combinatorial geometric object like a polytope, whose polynomial pieces agree to a specified degree of differentiability. The latter is a graph-theoretic construction of torus-equivariant cohomology that Shareshian and Wachs used to reformulate the well-known Stanley-Stembridge conjecture, a reformulation that was recently proven to hold by Brosnan and Chow and independently Guay-Paquet. This paper focuses on the theory of generalized splines. A generalized spline on a graph $$G$$ with each edge labeled by an ideal in a ring $$R$$ consists of a vertex-labeling by elements of $$R$$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $$R$$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the set of possible edge-labelings consists of at most two finitely-generated ideals, and $2)$ for cycles when the set of possible edge-labelings consists of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $$\mathbb{C}[x,y]$$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in the theory of classical (analytic) splines.more » « less
- 
            Karshon, Yael; Melrose, Richard; Uhlmann, Gunther; Uribe, Alejandro (Ed.)Hessenberg varieties H(X,H) form a class of subvarieties of the flag variety G/B, parameterized by an operator X and certain subspaces H of the Lie algebra of G. We identify several families of Hessenberg varieties in type A_{n−1} that are T -stable subvarieties of G/B, as well as families that are invariant under a subtorus K of T. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the T-stable Hessenberg varieties, we identify several that are GKM spaces, meaning T acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type A_{n−1} and in general Lie type.more » « less
- 
            Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $$\mathfrak{sl}_k$$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $$\mathfrak{sl}_3$$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $$\mathfrak{sl}_2$$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $$\mathfrak{sl}_3$$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $$\mathfrak{sl}_3$$.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available